Comparative analysis of myometrial and vascular smooth muscle cells to determine optimal cells for use in drug discovery.


Novel therapeutic regulators of uterine contractility are needed to manage preterm labor, induce labor and control postpartum hemorrhage. Therefore, we previously developed a high-throughput assay for large-scale screening of small molecular compounds to regulate calcium-mobilization in primary mouse uterine myometrial cells. The goal of this study was to select the optimal myometrial cells for our high-throughput drug discovery assay, as well as determine the similarity or differences of myometrial cells to vascular smooth muscle cells (VSMCs)-the most common off-target of current myometrial therapeutics. Molecular and pharmacological assays were used to compare myometrial cells from four sources: primary cells isolated from term pregnant human and murine myometrium, immortalized pregnant human myometrial (PHM-1) cells and immortalized non-pregnant human myometrial (hTERT-HM) cells. In addition, myometrial cells were compared to vascular SMCs. We found that the transcriptome profiles of hTERT-HM and PHM1 cells were most similar (r = 0.93 and 0.90, respectively) to human primary myometrial cells. Comparative transcriptome profiling of primary human myometrial transcriptome and VSMCs revealed 498 upregulated (p ≤ 0.01, log2FC≥1) genes, of which 142 can serve as uterine-selective druggable targets. In the high-throughput Ca-assay, PHM1 cells had the most similar response to primary human myometrial cells in OT-induced Ca-release (E = 195% and 143%, EC = 30 nM and 120 nM, respectively), while all sources of myometrial cells showed excellent and similar robustness and reproducibility (Z' = 0.52 to 0.77). After testing a panel of 61 compounds, we found that the stimulatory and inhibitory responses of hTERT-HM cells were highly-correlated (r = 0.94 and 0.95, respectively) to human primary cells. Moreover, ten compounds were identified that displayed uterine-selectivity (≥5-fold E or EC compared to VSMCs). Collectively, this study found that hTERT-HM cells exhibited the most similarity to primary human myometrial cells and, therefore, is an optimal substitute for large-scale screening to identify novel therapeutic regulators of myometrial contractility. Moreover, VSMCs can serve as an important counter-screening tool to assess uterine-selectivity of targets and drugs given the similarity observed in the transcriptome and response to compounds.